2018-06-01

The Effects of Larval Population Density and Social Interactions on Adult Fecundity in Drosophila melanogaster

Nicholas Wanderscheid
Western Oregon University, nwanderschied14@mail.wou.edu

Eva Batenhorst
Western Oregon University, ebatenhorst16@mail.wou.edu

Maria Franco Ramos
Western Oregon University, mfrancoramos15@mail.wou.edu

Follow this and additional works at: https://digitalcommons.wou.edu/aes

Part of the [Biology Commons](https://digitalcommons.wou.edu/aes)

Recommended Citation
https://digitalcommons.wou.edu/aes/144

This Poster is brought to you for free and open access by the Student Scholarship at Digital Commons@WOU. It has been accepted for inclusion in *Academic Excellence Showcase Proceedings* by an authorized administrator of Digital Commons@WOU. For more information, please contact digitalcommons@wou.edu, kundas@mail.wou.edu, bakersc@mail.wou.edu.
The Effects Of Larval Population Density And Social Interactions On Adult Fecundity In *Drosophila melanogaster*

Eva Batenhorst, Maria Franco Ramos, & Nick Wanderscheid

Introduction

- *Drosophila melanogaster* has been used as a model organism to study social interactions and sexual behaviors.
- Previous studies have suggested that fecundity in flies may be affected by larval population density.
 \[1,2\]
- Other studies suggest that larvae raised in isolation have impaired visual and olfactory development which can lead to low fecundity.
 \[3,4\]
- We crossed females and males raised in isolation (low density), medium density, and high density larval population densities.
- We hope to gain insight on whether adult fecundity is affected by larval population density in fruit flies.

Methods

- **20 vials with 1 egg**
- **10 vials with 25 eggs**
- **2 vials with 200 eggs**

Flies were removed from the vials as they eclosed, before having a chance to mate, and were separated by sex.

We set up 9 different pairwise crosses using the virgin flies previously collected.

- Vials were kept in a 25 C incubator in a 12-hour light/dark cycle to grow.
- Food was provided as to not be a limiting factor for both fly parents and offspring.
- Parent flies (Gen 0) were allowed to mate for five days before they were removed, frozen, and measured by wing vein length to obtain overall size measurement.
- In following days, we observed each vial and counted adult offspring until no eclosion was observed.

Results

Preliminary data suggest that medium density flies eclose at a faster rate than high density flies, and a greater percentage of eggs develop into adults (Figures 1,3,4).

Wing length data suggests that larvae raised in isolation tend to be larger, while larvae raised in high population density tend to be smaller (Figure 2).

We will continue to run this experiment for a total of 10 replicates of each mating combination.

When complete, this research will contribute to our knowledge about the effects of larval population density and social interactions on adult *Drosophila* fecundity.

Conclusions

- Preliminary data suggest that medium density flies eclose at a faster rate than high density flies, and a greater percentage of eggs develop into adults (Figures 1,3,4).
- Wing length data suggests that larvae raised in isolation tend to be larger, while larvae raised in high population density tend to be smaller (Figure 2).
- We will continue to run this experiment for a total of 10 replicates of each mating combination.

References

Acknowledgments

We would like to thank Doctors Michael Baltzley, and Kristin Latham-Scott for guidance and a tremendous amount of help with data organization and analysis, and Western Oregon University for the facilities and the equipment.